Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis—Controlling Lineage Specification and Fate

نویسندگان

  • Chieh Yu
  • Lyn R. Griffiths
  • Larisa M. Haupt
چکیده

Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs). Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs) are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM), where they interact with numerous signaling molecules. The glycosaminoglycan (GAG) chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs) and wingless-type MMTV integration site family (Wnts). As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural lineage fate and produce abundant cells of lineage specificity will further advance stem cell therapy for the development of improved repair of neurological disorders. We propose a deeper understanding of HSPG-mediated neurogenesis can potentially provide novel therapeutic targets of neurogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of SULF1 Gene on Angiogenesis

Single-gene disorders occur when mutation in a gene causing alteration of gene function while in multifactorial disorders, mutations occur in multiple genes, and these are usually coupled with environmental causes. In addition, in a multifactorial disorder such as diabetes, the complication is under the influence of different genes. For example, in diabetic retinopathy many genes are involved i...

متن کامل

Ventral neural progenitors switch toward an oligodendroglial fate in response to increased Sonic hedgehog (Shh) activity: involvement of Sulfatase 1 in modulating Shh signaling in the ventral spinal cord.

In the embryonic chick ventral spinal cord, the initial emergence of oligodendrocytes is a relatively late event that depends on prolonged Sonic hedgehog (Shh) signaling. In this report, we show that specification of oligodendrocyte precursors (OLPs) from ventral Nkx2.2-expressing neural progenitors occurs precisely when these progenitors stop generating neurons, indicating that the mechanism o...

متن کامل

Heparan sulfate proteoglycans mediate interleukin-7-dependent B lymphopoiesis.

Heparin/heparan sulfate proteoglycans (HSPGs) have the potential to bind and directly regulate the bioactivity of hematopoietic growth factors including interleukin-7 (IL-7), a cytokine critical for murine B-cell development. We examined the consequence of manipulating soluble heparin and cell-surface heparan sulfate to IL-7-dependent responses of B-cell precursors. Soluble heparin was found to...

متن کامل

Heparan Sulfate Proteoglycans during Terminal Skeletal Muscle Cell Differentiation: Possible Functions and Regulation of their Expression

Heparan sulfate proteoglycans are key molecules found associated with the cell surface and extracellular matrix (ECM). These macromolecules seem to be essential to achieve terminal skeletal muscle differentiation. In this review, we present data about the types of beparan suifate proteoglycans present in skeletal muscle cells, how their expression changes during differentiation and we propose s...

متن کامل

Cooperative effect of heparan sulfate and laminin mimetic peptide nanofibers on the promotion of neurite outgrowth.

Extracellular matrix contains an abundant variety of signals that are received by cell surface receptors contributing to cell fate, via regulation of cellular activities such as proliferation, migration and differentiation. Cues from extracellular matrix can be used for the development of materials to direct cells into their desired fate. Neural extracellular matrix (ECM) is rich in axonal grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017